A Fuzzy Perceptron as a Generic Model for Neuro{Fuzzy Approaches
نویسنده
چکیده
This paper presents a fuzzy perceptron as a generic model of multilayer fuzzy neural networks, or neural fuzzy systems, respectively. This model is suggested to ease the comparision of diierent neuro{fuzzy approaches that are known from the literature. A fuzzy perceptron is not a fuzziication of a common neural network architecture, and it is not our intention to enhance neural learning algorithms by fuzzy methods. The idea of the fuzzy perceptron is to provide an architecture that can be initialized with prior knowledge, and that can be trained using neural learning methods. The training is carried out in such a way that the learning result is interpretable in the form of linguistic fuzzy if{then rules. Next to the advantage of having a generic model to compare neuro{fuzzy models, the fuzzy perceptron can be specialized e.g. for data analysis and control tasks.
منابع مشابه
Nefclass | a Neuro{fuzzy Approach for the Classification of Data
In this paper we present NEFCLASS, a neuro{fuzzy system for the classiication of data. This approach is based on our generic model of a fuzzy perceptron which can be used to derive fuzzy neural networks or neural fuzzy systems for spe-ciic domains. The presented model derives fuzzy rules from data to classify patterns into a number of (crisp) classes. NEFCLASS uses a supervised learning algorit...
متن کاملA Neuro-Fuzzy Model for a Dynamic Prediction of Milk Ultrafiltration Flux and Resistance
A neuro-fuzzy modeling tool (ANFIS) has been used to dynamically model cross flow ultrafiltration of milk. It aims to predict permeate flux and total hydraulic resistance as a function of transmembrane pressure, pH, temperature, fat, molecular weight cut off, and processing time. Dynamic modeling of ultrafiltration performance of colloidal systems (such as milk) is very important for design...
متن کاملNeuro-Fuzzy Approaches to Decision Making: Application to Check Authorization from Incomplete Information
We describe the application of a multilayer perceptron, polynomial neural networks, and a fuzzy decision model to the problem of check approval from incomplete data. A simple benchmark case was established as a performance metric to compare the various non-linear strategies that were implemented. An overall improvement of at least 10% was obtained in each of these methods.
متن کاملBeyond Neuro{fuzzy: Perspectives and Directions
The interest in neuro{fuzzy systems has grown tremendously over the last few years. First approaches concentrated mainly on neuro{fuzzy controllers, whereas newer approaches can also be found in the domain of data analysis. After successful applications in Japan neuro{fuzzy concepts also nd their way into the European industries, though mainly simple models, like FAMs, still prevail. This paper...
متن کاملOn fault detection under soft computing model uncertainty
The paper deals with the problems of robust fault detection using soft computing techniques, in particular neural networks (Group Method of Data Handling, GMDH), multi-layer perceptron), and neuro-fuzzy networks (Takagi-Sugeno model). The model based approach to Fault Detection and Isolation (FDI) is considered. The main objective is to show how to employ the bounded-error approach to determine...
متن کامل